Tag Archives: elastic couplings

China Best Sales Jss Type High Speed Transmission Shaft Flange Serpentine Shaft Snake Spring Grid Couplings Flexible Coupling with Metallic Elastic Element flange coupling

Product Description

Flexible Coupling with metallic elastic element  

Description:
The JSS Double Flange Snake Spring Grid Coupling between the power machine and the working machine connects the main and driven ends through 1 or several different kinds or different types of coupling, forming the shafting transmission system. The main structure of the JSS Double Flange Snake Spring Grid Coupling is made up of 2.5 coupling, 2.5 cover, 2 seal rings and snakes spring. It is designed to transmit torque by means of a snake spring embedded in the alveolus of 2 half couplings. The coupling is inserted into the slot of the 2.5 coupling by serpentine springs, so as to realize the link between the driving shaft and the driven shaft. When running, is on the active end tooth face axial force snake spring drives the driven end to transfer torque, so largely avoided the resonance phenomenon, the elastic variables and reed in transmitting torque generated by the mechanical system can obtain good damping effect, the average reduction rate reached more than 36%.

Features:
1.Designed for ease of maintenance and grid spring replacement
2.High tensile grid springs ensure superior coupling performance and longer coupling life
3.Split covers allow for easy access to grid springs
4.Interchangeable with industry standard grid couplings
5.Drop-out design ideal for pump applications and servicing
6.Lightweight die-cast aluminum grid cover

Product paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Torque and Speed Ratings of Flange Couplings

Flange couplings are available in various sizes and designs to accommodate a wide range of torque and rotational speed requirements. The torque and speed ratings of flange couplings depend on several factors, including their size, material, and design.

Torque Rating:

The torque rating of a flange coupling indicates the maximum amount of torque it can transmit without experiencing failure or damage. It is typically specified in Nm (Newton-meters) or lb-ft (pound-feet). The torque rating varies for different sizes and types of flange couplings. Larger flange couplings generally have higher torque ratings compared to smaller ones.

Speed Rating:

The speed rating of a flange coupling represents the maximum rotational speed at which it can operate reliably without excessive vibration or wear. It is typically expressed in RPM (revolutions per minute). The speed rating is influenced by factors such as the design, material, and balancing of the flange coupling. Higher-speed applications require flange couplings that can handle the increased centrifugal forces and dynamic loads associated with higher RPMs.

Size and Type:

The torque and speed ratings vary for different sizes and types of flange couplings. For example:

  • Smaller flange couplings, such as those used in light-duty applications, may have torque ratings ranging from a few Nm to several hundred Nm, and speed ratings up to a few thousand RPM.
  • Larger flange couplings, used in heavy-duty industrial applications, can have torque ratings exceeding several thousand Nm and speed ratings that may reach tens of thousands of RPM.
  • Flexible flange couplings may have slightly lower torque ratings compared to rigid flange couplings but offer greater misalignment compensation.

Manufacturer Specifications:

It is essential to refer to the manufacturer’s specifications and technical data to determine the specific torque and speed ratings for each size and type of flange coupling. Manufacturers typically provide detailed performance data to help users select the appropriate flange coupling for their specific application.

Application Considerations:

When selecting a flange coupling, it is crucial to consider the torque and speed requirements of the application. The operating conditions, such as load fluctuations and thermal effects, should also be taken into account to ensure the flange coupling’s reliable performance and longevity.

Conclusion:

Flange couplings come in various sizes and designs, each with its own torque and speed ratings. Properly selecting a flange coupling that meets the specific torque and speed requirements of the application is essential to ensure efficient and trouble-free power transmission in mechanical systems.

flange coupling

How do Flange Couplings Handle Shaft Misalignment in Rotating Equipment?

Flange couplings are designed to handle certain degrees of shaft misalignment in rotating equipment. The flexibility of flange couplings allows them to accommodate minor misalignments between the connected shafts without causing significant stress or damage. The ability to handle shaft misalignment is one of the key advantages of using flange couplings in various industrial applications. Here’s how flange couplings handle shaft misalignment:

1. Radial Misalignment: Flange couplings can handle radial misalignment, which is the offset between the rotational axis of two connected shafts. This misalignment can be in the form of parallel misalignment or angular misalignment. Flange couplings with flexible elements, such as elastomeric inserts or diaphragms, can absorb and compensate for radial misalignment, ensuring smooth power transmission between the shafts.

2. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the rotational axis of the shafts. While some flange couplings may have limited axial misalignment capabilities, others may not be designed to accommodate significant axial movements. Engineers must consider the specific requirements of the application to ensure that the selected flange coupling can handle the anticipated axial misalignment.

3. Angular Misalignment: Angular misalignment refers to the angle between the rotational axes of the two shafts. Flange couplings with flexible elements can handle a certain degree of angular misalignment by flexing and adjusting to the changing angle. However, excessive angular misalignment can lead to increased wear and reduced coupling life, so it’s essential to keep the misalignment within acceptable limits.

4. Rigid Couplings vs. Flexible Couplings: Rigid couplings, such as sleeve couplings or clamp-style couplings, are not capable of handling misalignment and require precise alignment during installation. On the other hand, flexible flange couplings can tolerate misalignment, making them more forgiving and easier to install in applications where perfect alignment is challenging to achieve.

It is important to note that while flange couplings can handle certain degrees of misalignment, excessive or sustained misalignment can lead to premature wear, reduced coupling life, and potential equipment damage. Therefore, proper alignment during installation and regular maintenance checks are essential to ensure the optimal performance and longevity of flange couplings in rotating equipment.

flange coupling

Selecting the Appropriate Flange Coupling for a Specific Application

Choosing the right flange coupling for a particular application involves considering several key factors to ensure optimal performance and reliability. Here’s a step-by-step guide to the selection process:

  1. 1. Identify Application Requirements: Understand the specific requirements of the application, including torque, speed, and operating conditions. Determine if the coupling will be exposed to harsh environments, extreme temperatures, or corrosive substances.
  2. 2. Calculate Torque and Power: Calculate the torque and power requirements for the shaft connection. This involves evaluating the motor or engine’s output torque and ensuring the selected coupling can handle the transmitted power.
  3. 3. Consider Misalignment: Assess the level of misalignment that may occur between the shafts during operation. For applications with significant misalignment, consider using flexible flange couplings that can accommodate angular, parallel, and axial misalignment.
  4. 4. Evaluate Speed and RPM: Determine the rotational speed (RPM) at which the coupling will operate. High-speed applications may require a balanced or precision-designed flange coupling to minimize vibrations and prevent damage to connected equipment.
  5. 5. Check Space Constraints: Consider the available space for installing the coupling. Some flange coupling designs may require more space than others, so ensure that the selected coupling fits within the available area.
  6. 6. Review Environmental Conditions: Evaluate the environmental conditions in which the coupling will operate. If the application involves exposure to dust, dirt, or moisture, consider using a protected or sealed flange coupling to prevent contamination.
  7. 7. Determine Flexibility: Decide on the level of flexibility required. Flexible flange couplings are suitable for applications where there may be shaft misalignment or torsional vibration. Rigid flange couplings, on the other hand, are ideal for precision applications with minimal misalignment.
  8. 8. Check Material Compatibility: Ensure that the material of the flange coupling is compatible with the shafts and the operating environment. Consider factors such as corrosion resistance, temperature tolerance, and mechanical properties.
  9. 9. Seek Expert Advice: When in doubt, consult with coupling manufacturers or engineering experts to help you select the most suitable flange coupling for your specific application.

By carefully considering these factors, you can select the appropriate flange coupling that meets the performance and operational requirements of your application, leading to a reliable and efficient shaft connection.

China Best Sales Jss Type High Speed Transmission Shaft Flange Serpentine Shaft Snake Spring Grid Couplings Flexible Coupling with Metallic Elastic Element  flange couplingChina Best Sales Jss Type High Speed Transmission Shaft Flange Serpentine Shaft Snake Spring Grid Couplings Flexible Coupling with Metallic Elastic Element  flange coupling
editor by CX 2024-04-10

China manufacturer CHINAMFG Lms Type Double Flange Easy Installation Maintenance Jaw Plum Elastic Spider Couplings flange coupling

Product Description

LMS Double Flange Type Plum Elastic Coupling (GB/T 5272-2002)

Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Torque and Speed Ratings of Flange Couplings

Flange couplings are available in various sizes and designs to accommodate a wide range of torque and rotational speed requirements. The torque and speed ratings of flange couplings depend on several factors, including their size, material, and design.

Torque Rating:

The torque rating of a flange coupling indicates the maximum amount of torque it can transmit without experiencing failure or damage. It is typically specified in Nm (Newton-meters) or lb-ft (pound-feet). The torque rating varies for different sizes and types of flange couplings. Larger flange couplings generally have higher torque ratings compared to smaller ones.

Speed Rating:

The speed rating of a flange coupling represents the maximum rotational speed at which it can operate reliably without excessive vibration or wear. It is typically expressed in RPM (revolutions per minute). The speed rating is influenced by factors such as the design, material, and balancing of the flange coupling. Higher-speed applications require flange couplings that can handle the increased centrifugal forces and dynamic loads associated with higher RPMs.

Size and Type:

The torque and speed ratings vary for different sizes and types of flange couplings. For example:

  • Smaller flange couplings, such as those used in light-duty applications, may have torque ratings ranging from a few Nm to several hundred Nm, and speed ratings up to a few thousand RPM.
  • Larger flange couplings, used in heavy-duty industrial applications, can have torque ratings exceeding several thousand Nm and speed ratings that may reach tens of thousands of RPM.
  • Flexible flange couplings may have slightly lower torque ratings compared to rigid flange couplings but offer greater misalignment compensation.

Manufacturer Specifications:

It is essential to refer to the manufacturer’s specifications and technical data to determine the specific torque and speed ratings for each size and type of flange coupling. Manufacturers typically provide detailed performance data to help users select the appropriate flange coupling for their specific application.

Application Considerations:

When selecting a flange coupling, it is crucial to consider the torque and speed requirements of the application. The operating conditions, such as load fluctuations and thermal effects, should also be taken into account to ensure the flange coupling’s reliable performance and longevity.

Conclusion:

Flange couplings come in various sizes and designs, each with its own torque and speed ratings. Properly selecting a flange coupling that meets the specific torque and speed requirements of the application is essential to ensure efficient and trouble-free power transmission in mechanical systems.

flange coupling

Flange Couplings and Variable Operating Conditions

Flange couplings are designed to accommodate a wide range of operating conditions and loads, making them versatile and suitable for various applications. The key factors that enable flange couplings to handle variable operating conditions and loads include:

  • Flexible Design: Some flange couplings, such as flexible flange couplings or disc couplings, are designed to have some degree of flexibility. This flexibility allows them to compensate for misalignment between shafts, which is often encountered in real-world applications.
  • Material Selection: Flange couplings are available in different materials to suit specific operating conditions. For example, stainless steel flange couplings are ideal for corrosive environments, while high-strength steel couplings are suitable for heavy-duty applications.
  • Customization: Many flange coupling manufacturers offer customization options to tailor the coupling’s design to meet specific requirements. This may include modifying the coupling’s size, material, or torque capacity.
  • Load Distribution: Flange couplings are designed to distribute loads evenly between the connected shafts. This even distribution of load helps prevent premature wear and reduces stress on the shafts and other connected equipment.
  • High Torque Capacity: Flange couplings are available in various designs, including those suitable for high torque applications. This allows them to handle varying levels of torque without compromising performance.
  • Temperature and Environmental Resistance: Flange couplings made from appropriate materials can withstand a wide range of temperatures and environmental conditions, making them suitable for both indoor and outdoor applications.

It is essential to consider the specific requirements of your application and the potential variations in operating conditions and loads when selecting a flange coupling. This ensures that the chosen coupling can reliably and efficiently transmit power while accommodating any changes in the operating environment.

flange coupling

What are the Maintenance Requirements for Flange Couplings?

Flange couplings require regular maintenance to ensure optimal performance and longevity. Proper maintenance can help prevent unexpected failures and downtime in the machinery or equipment. Here are the key maintenance requirements for flange couplings:

1. Inspection: Regularly inspect the flange coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, or any deformations in the flange and bolt holes. Ensure that the coupling is properly aligned with the shafts.2. Lubrication: Lubricate the flange coupling as per the manufacturer’s recommendations. Proper lubrication helps reduce friction and wear between the mating surfaces of the flanges, bolts, and nuts. Use the right type of lubricant that is compatible with the coupling material.3. Bolt Torque Check: Check the bolt torque regularly to ensure that the flange coupling is securely fastened. Loose bolts can lead to misalignment and coupling failure. Follow the recommended torque values provided by the manufacturer.4. Alignment: Maintain proper shaft alignment to prevent excessive forces on the flange coupling. Misalignment can cause uneven load distribution and accelerated wear on the coupling components.5. Environmental Protection: If the flange coupling is exposed to harsh or corrosive environments, take necessary measures to protect it. Consider using protective coatings or seals to prevent corrosion and damage.6. Regular Servicing: Schedule regular servicing of the machinery or equipment, including the flange coupling. This allows for a thorough inspection and timely replacement of worn-out or damaged components.7. Replacement of Worn Parts: When signs of wear or damage are detected during inspections, replace the worn or damaged parts promptly. Delaying the replacement can lead to further damage and compromise the performance of the coupling.8. Follow Manufacturer’s Guidelines: Always follow the maintenance guidelines provided by the flange coupling manufacturer. They may have specific recommendations based on the design and material of the coupling. Proper maintenance and regular checks can extend the life of the flange coupling and contribute to the overall reliability and efficiency of the connected machinery. It is essential to create a maintenance schedule and adhere to it diligently to ensure the smooth operation of the flange coupling and the entire mechanical system.

China manufacturer CHINAMFG Lms Type Double Flange Easy Installation Maintenance Jaw Plum Elastic Spider Couplings  flange couplingChina manufacturer CHINAMFG Lms Type Double Flange Easy Installation Maintenance Jaw Plum Elastic Spider Couplings  flange coupling
editor by CX 2024-02-10